Design Example Report
\(\left.$$
\begin{array}{|l|l|}\hline \text { Title } & \begin{array}{l}\text { 40 W Mu/tiple Output Flyback Converter } \\
\text { With Four LED Drivers Using InnoMux }\end{array} \\
& \begin{array}{l}\text { IMX102U and InnoSwitch } \\
\text { IM 3-MX }\end{array}
$$ \\

INN3468C\end{array}\right]\)| Specification | 85 VAC - 265 VAC Input; 5 V / 3 A CV; (30 V -
 50 V) / 25 W LED Output; 4 LED Strings |
| :--- | :--- |
| Application | Computer Display Monitor PSU |
| Author | Applications Engineering Department |
| Document
 Number | DER-636 |
| Date | September 9, 2019 |
| Revision | 1.2 |

Summary and Features

Unique single stage conversion; multiple outputs; flyback architecture

- High full power efficiency across the universal line range
- Energy Star 8.0 efficiency compliance
- High accuracy independently regulated $5 \mathrm{~V} / 3 \mathrm{~A} \mathrm{CV}$ output with extremely fast load transient response.
- Four independent CC LED outputs matched to within $<3.5 \%$ at full current.
- Wide LED string voltage range: 30 V to 50 V makes it suitable for wide range of computer monitor applications.
- Configurable for
- Analog dimming mode
- Straight PWM dimming mode
- Filtered PWM dimming mode
- Hybrid dimming mode
- Control chipset incorporating isolated feedback and communication channels

PATENT INFORMATION

The products and applications illustrated herein (including transformer construction and circuits external to the products) may be covered by one or more U.S. and foreign patents, or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A complete list of Power Integrations' patents may be found at www.power.com. Power Integrations grants its customers a license under certain patent rights as set forth at https://www.power.com/company/intellectual-propertylicensing/.

Table of Contents

1 Introduction 6
2 Power Supply Specification 10
3 Schematic 11
4 Circuit Description 12
4.1 Input EMI Filtering 12
4.2 Primary-Side Conversion 12
4.2.1 Primary-Side Controller Power Source and OVP Protection 12
4.2.2 Primary-Side OVP, Brown-In and Brown-Out Protection 12
4.2.3 Primary Peak Current Limit 13
4.3 Secondary-Side 13
4.3.1 Primary to Secondary-Side Communication 13
4.3.2 SR FET Control 13
4.3.3 InnoSwitch3-MX to InnoMux Communication 13
4.3.4 InnoMux Power Sources 14
4.3.5 High Side MOSFET Driver for Q1 14
4.3.6 Output Control 14
4.3.7 LED Current Control and Dimming 15
4.3.8 Output Power Limiting 15
4.3.9 Standby Mode 16
4.3.10 Start-Up Process 17
5 DER-636 Connection Diagram 20
6 PCB Layout 21
7 Bill of Materials 23
8 PI Expert Design Tool output 25
9 Transformer (T1) Specification 30
9.1 Electrical Diagram 30
9.2 Winding Stack Diagram 31
9.3 Electrical Specifications 31
9.4 Materials List 32
9.5 Construction 32
9.6 Winding Illustration 34
10 Improvement of Voltage Isolation from Core to Pins 7 and 12 42
11 Performance Data 49
11.1 Efficiency 49
11.2 CV1 Load Regulation and Cross-Regulation 52
11.3 LED Current Cross Regulation with CV1 Load and VAC 53
11.4 LED Dimming and String Current Matching 55
11.5 Input Power in Standby Mode and with 10 mA Load on 5 V 73
12 Waveforms 75
12.1 Load Transient Response 75
12.2 Switching Waveforms 79
12.2.1 InnoSwitch3-MX Voltage Waveforms 79
12.2.2 SR FET Voltage Waveforms 79
12.2.3 Q1 5 V Selection MOSFET Voltage Waveforms 80
12.2.4 D3, LED Output Diode Voltage Waveforms 80
12.2.5 Start-Up Waveforms 81
12.2.6 Start-Up in Standby. 83
12.3 Brown-In and Brown-Out 84
12.4 Output Ripple Measurements. 86
12.4.1 Ripple Measurement Technique 86
13 Conducted Emissions with Output GND Connected to Ground Plane. 89
13.1 115VAC 89
13.2 230VAC 91
14 Lighting Surge Test 93
14.1 Differential Surge Test 93
14.2 Common mode Surge Test. 93
14.3 Ring Wave Surge Test Results 93
15 ESD Test Results. 94
16 Thermals and heatsink design 95
16.1 Board with Heat Sink 95
16.2 Component Temperatures with Heat Sink 96
16.3 Heat Sink Drawing 97
17 Revision History 100
Figure 1 - Simplified Schematic of Multiplexed Architecture. 7
Figure 2 - PCB Assembly - Top View. 8
Figure 3 - PCB Assembly - Bottom View, with Heat Sink. 8
Figure 4 - PCB Assembly - Bottom View, without Heat Sink.9
Figure 5 - Schematic 11
Figure 6 - First 10 ms of Start-Up. 17
Figure 7 - Complete Start-Up Cycle Over Approximately 230 ms 18
Figure 8 - DER-636 Connection Diagram. 20
Figure 9 - Printed Circuit Layout, Top. 21
Figure 10 - Printed Circuit Layout, Bottom 22
Figure 11 - Transformer Electrical Diagram. 30
Figure 12 - Transformer Winding Stack 31
Figure 13 - Full Load (40 W) Efficiency vs. Line; Room Temperature 49
Figure 14 - Efficiency vs Output Power with 30 V LED Strings 50
Figure 15 - Efficiency vs Output Power with 40 V LED Strings. 51
Figure 16 - CV1 Cross Regulation at All Conditions. 52
Figure 17 - Effect of CV1 Load and VAC Input on LED Current, 30 V LED Strings. 53
Figure 18 - Effect of CV1 Load and VAC Input on LED Current, 40 V LED Strings. 54
Figure 19 - Total LED Current vs. ADIM Input Voltage for 30 V LED Strings. 55
Figure $20-4 \times 30 \mathrm{~V}$ String LED Current vs. ADIM Voltage at 90 VAC. 56
Figure 21 - LED String Current Matching Error for 30 V LED Strings at 90 VAC. 57
Figure $22-4 \times 30 \mathrm{~V}$ String LED Current vs. ADIM Voltage at 115 VAC. 58
Figure 23 - LED String Current Matching Error for 30 V LED Strings at 115 VAC. 59
Figure $24-4 \times 30$ V String LED Current vs. ADIM Voltage at 230 VAC. 60
Figure 25 - LED String Current Matching Error for 30 V LED Strings at 230 VAC. 61
Figure $26-4 \times 30$ V String LED Current vs. ADIM Voltage at 265 VAC. 62
Figure 27 - LED String Current Matching Error for 30 V LED Strings at 265 VAC. 63
Figure 28 - Total LED Current vs. ADIM Input Voltage for 40 V LED Strings. 64
Figure $29-4 \times 40$ V String LED Current vs. ADIM Voltage at 90 VAC. 65
Figure 30 - LED String Current Matching Error for 40 V LED Strings at 90 VAC. 66
Figure $31-4 \times 40$ V String LED Current vs. ADIM Voltage at 115 VAC. 67
Figure 32 - LED String Current Matching Error for 40 V LED Strings at 115 VAC. 68
Figure $33-4 \times 40$ V String LED Current vs. ADIM Voltage at 230 VAC. 69
Figure 34 - LED String Current Matching Error for 40 V LED Strings at 230 VAC. 70
Figure $35-4 \times 40$ V String LED Current vs. ADIM Voltage at 265 VAC. 71
Figure 36 - LED String Current Matching Error for 40 V LED Strings at 265 VAC. 72
Figure 37 - Input Power vs. Input Voltage, Room Temperature. 74
Figure 39 -5 V Output Load Transient 50 mA to 3 A with 63 mA Total LED Current. 75
Figure 40 - 5 V Output Load Transient 3A to 50 mA with 63 mA Total LED Current. 76
Figure 41 -5 V Output Load Transient 50 mA to 3 A with 625 mA Total LED Current. 77
Figure 42 -5 V Output Load Transient 3A to 50 mA with 625 mA Total LED Current. 78
Figure 43 - Drain Voltage Waveforms. 90 VAC Input, Full Load, (331 Vmax). 79
Figure 44 - Drain Voltage Waveforms. 265 VAC Input, Full Load, ($596 \mathrm{~V}_{\text {max }}$). 79
Figure 45 - SR FET Voltage Waveforms. 265 VAC Input, Full Load, (42.1 Vmax). 79
Figure 46 - Q1 Selection MOSFET Voltage Waveforms, 265 VAC Input. 80
Figure 47 - Q1 Selection MOSFET Voltage Waveforms During Start-Up. 80
Figure 48 - D3, LED Output Diode Voltage Waveforms, 265 VAC Input. 80
Figure 49 - D3, LED Output Diode Voltage Waveforms During Start-Up. 80
Figure 50 - Input 90 VAC. Initial Start-up 1st 10 ms. 81
Figure 51 - Input 90 VAC. Full Start-Up Over 500 ms. 81
Figure 52 - Input 115 VAC. Initial Start-up 1st 10 ms 81
Figure 53 - Input 115 VAC. Full Start-Up Over 500 ms. 81
Figure 54 - Input 230 VAC. Initial Start-up 1st 10 ms 82
Figure 55 - Input 230 VAC. Full Start-Up over 500 ms 82
Figure 56 - Input 265 VAC. Initial Start-up 1st 10 ms 82
Figure 57 - Input 265 VAC. Full Start-Up over 500 ms 82
Figure 58 - Input 90 VAC. Full Start-Up over 500 ms. 83
Figure 59 - Input 115 VAC. Full Start-Up over 500 ms 83
Figure 60 - Input 230 VAC. Full Start-Up over 500 ms 83
Figure 61 - Input 265 VAC. Full Start up over 500 ms. 83
Figure 62 - Brown-In and Brown-Out response, 90 VAC - 0 VAC - 90 VAC. 84
Figure 63 - Brown-In and Brown-Out response, 265 VAC - 0 VAC - 265 VAC. 85
Figure 64 - Oscilloscope Probe Prepared for Ripple Measurement. 86
Figure 65 - Oscillocope Probe with modified BNC Adapter. 86
Figure $66-\mathrm{V}_{\text {IN }}=90$ VAC. $\mathrm{V}_{\text {RIPPLE_CV1 }}=55.1 \mathrm{mV} \mathrm{PK}_{\text {P-PK }}$. 87
Figure $67-\mathrm{V}_{\mathrm{IN}}=115 \mathrm{VAC}$. $\mathrm{V}_{\text {RIPPLE_CV } 1}=50.3 \mathrm{mV} \mathrm{PK}_{\text {PKK }}$ 87
Figure $68-\mathrm{V}_{\text {IN }}=230$ VAC. $\mathrm{V}_{\text {RIPPLE_CV1 }}=57.8 \mathrm{mV} \mathrm{V}_{\text {PK-PK }}$ 87
Figure $69-\mathrm{V}_{\text {IN }}=265$ VAC. $\mathrm{V}_{\text {RIPPLE_CV1 }}=51.9 \mathrm{mV}_{\text {PK-PK }}$ 87
Figure $70-\mathrm{V}_{\text {IN }}=115 \mathrm{VAC} . \mathrm{V}_{\text {RIPPLE_CV1 }}=44.0 \mathrm{mV}_{\text {PK-PK }}$ 88
Figure $71-V_{\text {IN }}=230$ VAC. $V_{\text {RIPPLE_CV1 }}=49.1 \mathrm{mV}_{\text {PK-PK }}$ 88
Figure $72-\mathrm{V}_{\text {IN }}=265$ VAC. $\mathrm{V}_{\text {RIPPLE_CV1 }}=52.8 \mathrm{mV}_{\text {PK-PK }}$ 88
Figure 73 - Conducted Emissions: 115VAC Input. 89
Figure 74 - Conducted Emissions: 230VAC Input. 91
Figure 75 - Populated Circuit Board Photograph, with Heat Sink. 95
Figure 76 - Heat Sink Drawing 97
Figure 77 - Heat Sink Insulator Sheet Drawing 98
Figure 78 - Heat Sink Thermal Pad Drawing 98
Figure 79 - Heat Sink Assembly Drawing 99
Table 1 - Power Supply Specification 10
Table 2 - DER-636 Bill of Materials 24
Table 3 - PI Expert Design Tool output 29
Table 4 - Transformer Electrical Specifications 31
Table 5 - Transformer Materials List 32
Table 6 - Transformer Construction Instructions 33
Table 7 - Transformer Winding Illustrations 41
Table 8 - Transformer Parameter Measurements 48
Table 9 - Standby Mode Test Results 73
Table 10 - Brown-In and Brown-Out response, 90 VAC - 0 VAC - 90 VAC Results 84
Table 11 - Brown-In and Brown-Out response, 265 VAC - 0 VAC - 265 VAC Results. 85
Table 12 - Conducted Emissions-Quasi Peak Detector: 115VAC Input. 90
Table 13 - Conducted Emissions-Average Detector: 115VAC Input. 90
Table 14 - Conducted Emissions- Quasi Peak Detector: 230VAC Input. 92
Table 15 - Conducted Emissions- Average Detector: 230VAC Input. 92
Table 16 - Differential Surge Test Results 93
Table 17 - Common Mode Surge Test Results 93
Table 18 - Ring Wave Surge Test Results 93
Table 19 - ESD Immunity Test Results, 115VAC 94
Table 20 - ESD Immunity Test Results, 230VAC 94
Table 21 - Component Temperatures 96

Important Note:

Although this board is designed to satisfy safety isolation requirements, the engineering prototype has not been agency approved. Therefore, all testing should be performed using an isolation transformer to provide the AC input to the prototype board.

1 Introduction

This engineering report describes a PSU for a LED computer monitor. The 40 W PSU has a $5 \mathrm{~V} / 3 \mathrm{ACV}$ output and a 25 W output providing power to four CC drivers intended for back-light LED strings in the LED monitor. The current through the individual LED strings is controlled from 0 mA to 156 mA by an analogue signal (ADIM) with a full scale of 1.5 V . The total maximum power output is 40 W and the input voltage range is 90 VAC to 265 VAC.

The PSU is based on a multiplexed, single-stage, multiple output topology shown in Figure 1. For each switching cycle, the energy stored in the transformer during the primary conduction interval is delivered to only one of the converter's main outputs (CV or LED). The energy from the primary is appropriately distributed between the converter main outputs by a secondary referred master controller according to the loading conditions at the outputs. This multiplexing is achieved by gating the steering FET Q1 appropriately. If energy pulse needs to be delivered to the CV1 output Q1 is turned ON prior to the end of the primary conduction interval. If Q1 is held OFF the energy is delivered to the LED output via the rectification diode D3. The master controller requests switching cycles from the primary as often as it needs to maintain all outputs in regulation. For the described multiplexing algorithm to work correctly it is essential that the transformer turns ratios are chosen such that: the minimum LED output voltage reflected to the primary of the transformer is greater than the CV output voltage reflected to the transformer primary. This technique achieves cross regulation within a fraction of 1% while significantly improving system efficiency when compared to conventional post regulation architectures. The new architecture supports multiple outputs driving both constant current and constant voltage loads, enabling the design of a single switch-mode power conversion stage that powers logic circuitry, USB ports, audio channels, and LED strings simultaneously.

Figure 1 - Simplified Schematic of Multiplexed Architecture.
This novel architecture is implemented using two controller ICs, the InnoSwitch3-MX IC for primary switching plus SR FET control, and InnoMux IC for output voltage and current control. Selection MOSFET Q1 and D3 are used to direct the energy packet to either the CV or LED output respectively.

The document contains the power supply specification, schematic, bill of materials, transformer documentation, printed circuit layout, and performance data.

Figure 2 - PCB Assembly - Top View.

Figure 3 - PCB Assembly - Bottom View, with Heat Sink.

Figure 4 - PCB Assembly - Bottom View, without Heat Sink.

2 Power Supply Specification

The table below represents the minimum acceptable performance of the design. Actual performance is listed in the results section.

Description	Symbol	Min	Typ	Max	Units	Comment
Input Voltage Frequency	$\begin{gathered} \mathbf{V}_{\text {IN }} \\ \mathbf{f}_{\text {LINE }} \end{gathered}$	$\begin{aligned} & 90 \\ & 47 \end{aligned}$	50/60	$\begin{gathered} 265 \\ 64 \\ \hline \end{gathered}$	$\begin{gathered} \text { VAC } \\ \mathrm{Hz} \end{gathered}$	2 Wire Input.
Output Output Voltage CV1 Output Ripple Voltage CV1 Output Current CV1 Output Voltage LED Output Current LED LED String Current Matching Error Total Output Power Continuous Output Power	$\begin{array}{\|c} \mathbf{V}_{\text {CV1 }} \\ \mathbf{V}_{\text {RIPPLE_CV1 }} \\ \mathbf{I}_{\text {OUT_CV1 }} \\ \mathbf{V}_{\text {LED }} \\ \mathbf{I}_{\text {LED }} \end{array}$	$\begin{gathered} 4.75 \\ 0.0 \\ 30 \\ 0 \end{gathered}$	5 40	$\begin{array}{\|c} 5.25 \\ 50 \\ 3 \\ 50 \\ 0.625 \\ 3.5 \\ \\ 40 \\ \hline \end{array}$	V mV A V A \% W	$\pm 5 \%$. 20 MHz Bandwidth. Max Power from LED Output is 25 W . Total Current set for 40 V LED Panel with ADIM $=1.5 \mathrm{~V}$ Equal Voltage on all ICC Pins. $25^{\circ} \mathrm{C}$.
Efficiency Full Load Standby Input Power (LEDs off)	η	86		300	$\begin{gathered} \text { \% } \\ \mathrm{mW} \end{gathered}$	Measured at 110 VAC and 230 VAC, full load 5 V 3 A and 40 V 0.625 A . Measured at 230 VAC $25^{\circ} \mathrm{C}$, 5 V 15 mA, STDBY pin Pulled Low.
Environmental Conducted EMI Safety		Meets CISPR22B / EN55022B Designed to meet IEC950, UL1950 Class				
Surge Common Mode Ring Wave		4		6	kV	100 kHz Ring Wave, 12Ω. Common Mode.
Surge Combination Wave				1	kV	Combination Wave, 2Ω Differential Mode.
ESD		$\begin{aligned} & \pm 2 \\ & \pm 2 \end{aligned}$		$\begin{gathered} \pm 15 \\ \pm 8 \end{gathered}$	kV	Air Discharge. Contact Discharge.
Ambient Temperature	T AMB	0		40	${ }^{\circ} \mathrm{C}$	Free Convection, Sea Level.

Table 1 - Power Supply Specification

3 Schematic

Figure 5 - Schematic.

4 Circuit Description

4.1 Input EMI Filtering

A two-stage EMI filter is used on the line AC input, C2/L1 for lower frequencies and C1/L2 for high frequencies. Mainly common mode noise is suppressed by the input filter, but useful suppression of differential noise is also achieved. These measures along with the Y capacitor C11 and screens within the transformer constrain the conducted emissions to below the specification limits.

The bulk storage capacitor C3 provides DC voltage smoothing after the bridge rectifier. VDR R1 provides protection against differential voltage surges and the NTC R1 limits the inrush current at power up.

4.2 Primary-Side Conversion

See latest data sheet for InnoSwitch3-MX operation details
The transformer primary is connected between the rectified DC bus (VIN_DC_TX) and the drain of an integrated power MOSFET within InnoSwitch3-MX IC (U2 pin 24). Primary current is returned to the bulk capacitor (C3) via the source tab of U2 (pin 16).

A low cost RCD clamp, formed by D4, R13, R7 and C13, limits the peak drain voltage due to the effects of transformer leakage inductance and output trace inductance.

4.2.1 Primary-Side Controller Power Source and OVP Protection

The primary-side IC is self-starting, using an internal high-voltage current source to charge the BPP pin capacitor C31, when AC is first applied. During normal operation the primary-side of the controller is powered from an auxiliary winding on the transformer. The output of this is configured as a flyback winding which is rectified and filtered using diode D5 and capacitor C30, and fed into the BPP pin via a current limiting resistor R22.

4.2.2 Primary-Side OVP, Brown-In and Brown-Out Protection

The primary-side output overvoltage protection is obtained using Zener diode D6. In the event of an uncontrolled overvoltage at the output, the increased voltage at the bias winding cause the Zener diode D6 to conduct and trigger the OVP protection in the primary-side controller.

Resistor R28 and R29 provide line voltage sensing to provide controlled brown in/out behaviour, these are set to approximately 75 VAC and 65 VAC respectively. At approximately 320 VAC, the current through these resistors exceeds the line overvoltage threshold, which results in the disabling of U2.

4.2.3 Primary Peak Current Limit

Capacitor C31 is $4.7 \mu \mathrm{~F}$ which sets the primary-side controller peak current to 'Increased' i.e. 2.2 A.

4.3 Secondary-Side

See latest data sheet for InnoMux operation details
The secondary-side of the InnoSwitch3-MX IC (U2) is powered by the BP pin of the InnoMux IC (U1 pin 15) and decoupled by C2.

4.3.1 Primary to Secondary-Side Communication

The secondary-side of the InnoSwitch3-MX IC (U2) requests the primary-side to initiate a switching cycle via the FluxLink, a galvanically isolated control channel. This occurs when the InnoMux IC (U1) raises the REQ pin (U2 pin 1) to the appropriate level.

4.3.2 SR FET Control

The gate of the SR FET (Q2) is turned on based on the winding voltage sensed via R5 and the FW pin (U2 pin 9). In continuous conduction mode operation, the SR FET (Q2) is turned off just prior to the secondary-side controller requesting a new switching cycle from the primary side. In discontinuous mode the SR FET (Q2) is turned off when the voltage drop across the Q2 falls below a threshold ($\left.\mathrm{V}_{\mathrm{SR}(\mathrm{TH})}\right)$. Secondary-side control of the primary-side MOSFET ensures that the primary-side power MOSFET and SR FET are never turned on simultaneously. The SR FET gate drive signal is output on the SR pin (U2 pin7) and provides a 5 V drive, so a logic level MOSFET must be used.

4.3.3 InnoSwitch3-MX to InnoMux Communication

Communications between the InnoSwitch3-MX IC (U2) and the InnoMux IC (U1) is executed through the following:

REQ pin - this is an analogue multi-level request input from the InnoMux IC with the following values, assuming Vref=1.221 V from data sheet.

- $<0.3 \mathrm{~V}$ - InnoMux IC is in reset.
- $0.3 \mathrm{~V}-0.61 \mathrm{~V}$ - InnoMux IC is in idle ring measurement window mode.
- $0.61 \mathrm{~V}-1.22 \mathrm{~V}-$ no pulse requested, but has control.
- $1.22 \mathrm{~V}-2.44 \mathrm{~V}$ - pulse requested.
- $>2.44 \mathrm{~V}$ - error, output overvoltage. Primary should be latched off.

ACK pin - On recognition of the switching cycle request from the InnoMux IC (U1), the InnoSwitch3-MX IC (U2) secondary-side, sends an acknowledge pulse to the InnoMux IC (U1). This is a digital signal.

The SR pin is used to drive the SR FET and allow the InnoMux IC (U1) to assess when the transformer is delivering energy to the secondary circuit.

FWC pin - this is an indication of the total secondary discharge time. This is a digital signal from the InnoSwitch3-MX IC (U2) to the InnoMux IC (U1). Similar to SR signal, but indicates discharge time more completely as SR may be turned off early.

4.3.4 InnoMux Power Sources
 See latest data sheet for InnoMux operation details

The InnoMux secondary-side control IC is powered by +V_LED during start-up via R9 and C18 (optional extra ESD supression) and VLED (U1 pin 23). An internal regulator reduces this to 5 V and outputs it on BP (U1 pin 15). Capacitor C24 provides BP5V decoupling for U1. The BP pin output powers the secondary-side controller of the InnoSwitch3-MX IC.

Once the voltage on VCV2 (U1 pin 21) reaches VCV2 ${ }_{\text {min }}(5.8 \mathrm{~V}-8.0 \mathrm{~V}$) the regulator input is switched from VLED to VCV2 to conserve power. VLED may be up to 100 V whereas VCV2 is usually $6 \mathrm{~V}-12 \mathrm{~V}$, the less voltage dropped, the lower the power loss. Resistor R10 and C19 provide optional extra ESD suppression. VCV2 is derived from an unregulated secondary winding in the transformer. The voltage generated by the winding depends on the loading conditions. Critically it provides a minimum of 5.8 V (at light load) supply to the CV2 pin.

4.3.5 High Side MOSFET Driver for Q1

The gate drive to the selection MOSFET Q1 provides a 5 V drive so a logic level MOSFET must be used. Capacitor C 20 is charged up to the level of $+\mathrm{V} _\mathrm{CV} 1,5 \mathrm{~V}$ in this case, then the -ve end of the capacitor is raised by 5 V , the BP level, to generate the 5 V gate drive pulse.
To allow visibility of the idle ring to the FW pin, Q1 is held on after a CV1 or VLED discharge cycle to permit Quasi Resonant switching when in DCM mode. During this time the InnoMux IC will send a REQ for the next pulse. When an ACK is received Q1 is turned off.

4.3.6 Output Control

Output rectification for the 5 V output is provided by SR FET (Q2) and CV1 selection MOSFET (Q1). Very low ESR capacitors, C4 and C7, provide filtering, and inductor L3 and capacitor C5 and C6 form a second stage filter that significantly attenuates the high frequency ripple and noise at the 5 V output.

Output rectification for the LED output is provided by SR FET (Q2) and diode (D3). Very low ESR capacitors, C14 and C15, provide energy storage and filtering at the LED output.

RC snubber networks comprising R14 and C16 for Q2, R8 and C12 for D3, R4 and C10 for D1 damp high frequency ringing across Diodes/MOSFETs, which results from leakage inductance of the transformer windings and the secondary's trace inductances.

Zener diode D2 is used as a voltage clamp for the transformer CV1 winding while the primary MOSFET is ON and Q1, Q2 are turned off, and D1, D3 are reverse biased. In this condition the secondary windings are floating w.r.t. GND. Without D2, the voltage on Q1 drain could be too high due to transformer winding capacitance interactions.

When the selection MOSFET (Q1) and the SR FET (Q2) are turned on, the transformer secondary windings are designed such that the voltage on the anode of D3 is below the lowest working LED string voltage. Therefore, D3 remains reverse biased and all the transformer energy is directed to the CV1 output via Q1.

When the selection MOSFET (Q1) is turned off and the SR FET (Q2) is turned on, the voltage on the anode of D3 rises until it is forward biased. In this condition all the transformer energy is directed to the LED output.
+V_CV1 output voltage is set by R5, R15 and R16 to FB1 (U1 pin 19). Loop compensation is provided by R2 and C9 due to the inclusion of L3.
+V_LED output overvoltage limit is set by R11 and R12 to FB3 (U1 pin 22). For DER-636 it has been set to 55 V .
Note: The actual +V _LED voltage is not set by these resistors, it is set by the voltage drop across the LED drivers ICC1-4, which is dependent on LED string current.

4.3.7 LED Current Control and Dimming

The LED current per driver is set by R18 and R34 on IS (U1 pin 3) plus, for this application which is configured for analog dimming, the voltage on ADIM (U1 pin 5). The resistance on the IS pin sets the maximum LED current per driver at the maximum ADIM voltage of 1.5 V . DER-636 has been set up for 625 mA total through 4 drivers with 1.5 V on ADIM, so 156.25 mA per driver.

Other dimming options are available, such as PWM, Sequenced PWM and combinations of analog and PWM. It would be simple to re-configure DER-636 to another dimming method. See latest data sheet for InnoMux operation details.

The InnoMux IC will auto detect the number of LED strings attached. To use a single string on DER-636, short outputs LED_RTN1 to 4, for 2 strings short LED_RTN 1 and 2 for the 1st string and short LED_RTN 3 and 4 for the $2^{\text {nd }}$ string, for 3 strings leave LED_RTN 4 unconnected and connect the 3 strings to LED_RTN 1,2 and 3 . In the 3 string case, the IS resistors R18 and R34 will need adjusting to permit 625 mA total LED current if required. Each LED_RTN driver can conduct 240 mA maximum.

4.3.8 Output Power Limiting

A power limit is applied to each output individually by using the PLIM1 and PLIM2 pins (U1 pins 12 and 13). Power is restricted by limiting the maximum average frequency an
output can receive charge pulses. That frequency is set by a resistor connected to the PLIM pin. In this case R19 on PLIM1 for the CV1 output and R30 on PLIM2 for the LED output. If the frequency is exceeded for a set period the InnoMux IC, and hence the whole circuit, will shut off and auto-restart.

4.3.9 Standby Mode

The STDBY pin is held at BP5V by R26. If STDBY is pulled to GND then the InnoMux IC enters 'Standby Mode'. Here, the LED driver circuit is powered down, reducing the InnoMux power requirement and the +V _LED output is maintained at a level of at least 15 V . With a standby load of 100 mW on +V_CV1, a Standby power at 230 VAC of under 300 mW can be realized.

Whilst in Standby Mode, full rated power (15 W) is still available on the +V_CV1 output.
Due to transformer leakage inductance there can be an overspill of energy into the LED winding that should go to the CV1 winding. With a low LED load (or no-load in Standby Mode) the LED voltage will increase, possibly to the OVP limit causing shut down. Zener diode VR1 and VR2 plus R6 dissipate some of the excess LED winding energy and passes the remainder to the CV1 output. Higher power LED operation and OVP function remain unaffected, but unwanted OVP operation is avoided in Standby.

Zener diode VR1 and VR2 may not be necessary if the transformer design has a low enough leakage inductance, or the application never allows a significant fraction of CV1 maximum power to be supplied during standby/very low LED current settings (say <20 mA).

4.3.10 Start-Up Process

Channel 1	Channel 2	Channel 3	Channel 4	Channel 5	Channel 6	Channel 8
Pri FET	CV1 5V	V led Output	BP5V [V]	U1/2 REQ pin Vds [V] Output [V]	U1/2 ACK	LED Output
[V] $]$		pin [V]				

Figure 6 - First 10 ms of Start-Up.

1. Secondary-side controllers are un-powered or initializing, so the primary-side controller switches without feedback information at a default rate of about 25 kHz and peak current set to approximately 75% of the maximum level. If the secondary side is unresponsive the primary side will time out and shut down, or the primary side bias voltage will rise enough to trigger a bias OVP shutdown.
2. The LED output is the only output to rise significantly during period [1]. Eventually it will rise to a level where the InnoMux IC (U1) internal series regulator can establish 5 V on BP5V. At this point U 1 is drawing power only from the LED output via the VLED pin (pin 23). U2 is powered by U1 via the BP pin (U1 pin15). IC U1 and U2 secondaryside controllers then initialize and U1 raises the REQ pin (U1 pin 10) to request a pulse from the primary-side controller ($\sim 1.7 \mathrm{~V}$).
3. When the InnoSwitch3-Mx secondary-side recognizes the signal, it requests a pulse from the primary-side and outputs an acknowledge pulse on the ACK pin (U2 pin 4). When the InnoMux IC (U2) recognizes the ACK signal, it drops the REQ pin to 'No Pulse Request' level ($\sim 0.9 \mathrm{~V}$). The InnoMux IC (U2) then uses Q1 to direct a proportion of the flyback pulses to the CV1 output and the rest to the LED output.
4. CV1 and LED output voltages can be seen to rise somewhat together. At some time during period 4, the unregulated CV2 will reach a sufficient level to power U1 and U2 via the VCV2 pin (U1 pin 21). The U2 regulator will automatically switch to drawing power only via the VCV2 pin, which is a more efficient source.

$\operatorname{Max}(\mathrm{C} 1) 341 \mathrm{~V} \quad \operatorname{Max}(\mathrm{C} 3) 43.15 \mathrm{~V}$
Figure 7 - Complete Start-Up Cycle Over Approximately 230 ms.
5. As the LED output voltage rises, a point will be reached when the forward volt drop of the LED strings will be exceeded, causing the voltage across the LED drivers (U2 pins $1,2,27$ and 28) to rise. This is detected by the InnoMux controller and used to determine if there are any short circuit faults in the LED circuit. If a fault is detected then the circuit constantly shuts down and auto-restarts until the power or the fault is removed. If no faults are detected, the circuit will enter Stand-by mode (LEDs off) or normal mode (LEDs on), dependant on the level on the STDBY input (U2 pin 24).

5 DER-636 Connection Diagram

Figure 8 - DER-636 Connection Diagram.

6 PCB Layout

To minimize crosstalk between the outputs of the converter it is advisable to minimize the length of the connection between the negative terminals of C 4 and C 7 to the source of SR (Q2). The same applies to the connection from the negative terminals of C14 and C15 to the source of SR (Q2). The two AC paths to the SR source should be kept separate.

Ideally the connection between the GND pins of U1 and U2 should not be shared with any AC ripple current in the output filter stages. This is important for achieving accurate synchronous rectification.

The primary switch in InnoSwitch3-MX IC is cooled through the SOURCE pin (the paddle) of the IC. Care should be taken that the thermal impedance between the paddle and the cooling copper of the PCB is kept to a minimum. For best results the cooling copper pour should flair out as rapidly as possible away from the solder joint.

Figure 9 - Printed Circuit Layout, Top.

Figure 10 - Printed Circuit Layout, Bottom.

7 Bill of Materials

Item	Qty	Ref Des	Description	Mfg Part Number	Mfg
1	1	BR1	$600 \mathrm{~V}, 4 \mathrm{~A}$, Bridge Rectifier, GBU Case	GBU4J-BP	Micro Commercial
2	1	C1	33 nF, 310 VAC, Polyester Film, X2	BFC233920333	Vishay
3	1	C2	220 nF, 275 VAC, Film, X2	PHE840MB6220MB12R17	Kemet
4	1	C3	$\begin{aligned} & 100 \mu \mathrm{~F}, 400 \mathrm{~V}, \text { Electrolytic, Low ESR, } 630 \mathrm{~m} \Omega \\ & (16 \times 40) \end{aligned}$	EKMX401ELL101ML40S	Nippon Chemi-Con
5	2	C4 C7	$1000 \mu \mathrm{~F}, 20 \%, 6.3 \mathrm{~V}$, Al Organic Polymer, Gen. Purp, 2000 Hrs @ $105^{\circ} \mathrm{C}$, ($8 \times 8 \mathrm{~mm}$)	RL80J102MDN1KX	Nichicon
6	1	C5	$1000 \mu \mathrm{~F}, 10 \mathrm{~V}$, Electrolytic, Very Low ESR, 41 $\mathrm{m} \Omega$, $(8 \times 20$)	EKZE100ELL102MH20D	Nippon Chemi-Con
7	1	C6	1μ F, 25 V, Ceramic, X5R, 0805	C2012X5R1E105K	TDK
8	1	C8	$100 \mu \mathrm{~F}, 25 \mathrm{~V}$, Electrolytic, Gen. Purp, (6.3 x 11)	EKMG250ELL101MF11D	Nippon Chemi-Con
9	1	C9	470 nF, 50 V, Ceramic, X7R, 0805	GRM21BR71H474KA88L	Murata
10	1	C10	100 pF 100V 10 \% X7R 0805	08051C101JAT2A	AVX
11	1	C11	3.3 nF , Ceramic, Y1	440LD33-R	Vishay
12	2	C12 C28	100 pF, 200 V, Ceramic, COG, 0805	08052A101JAT2A	AVX
13	1	C13	$1 \mathrm{nF}, 1000$ V, Ceramic, X7R, 1206	CC1206KKX7RCBB102	Yageo
14	2	C14 C15	$56 \mu \mathrm{~F}, 20 \%$, 63 V, Al Organic Polymer, Gen. Purp, (10×14)	870055875006	Wurth
15	1	C16	$1 \mathrm{nF}, 200 \mathrm{~V}$, Ceramic, X7R, 0805	08052C102KAT2A	AVX
16	2	C17 C19	100 nF, 25 V, Ceramic, X7R, 0805	08053C104KAT2A	AVX
17	1	C18	$100 \mathrm{nF}, 200 \mathrm{~V}$, Ceramic, X7R, 1210	12102C104MAT2A	AVX
18	2	C20 C21	220 nF, 25 V, Ceramic, X7R, 0805	CC0805KRX7R8BB224	Yageo
19	1	C22	2.2 nF, 50 V, Ceramic, X7R, 0805	08055C222KAT2A	AVX
20	2	C23 C24	2.2 FF, 10 V , Ceramic, X7R, 0805	C0805C225M8RACTU	Kemet
21	1	C30	$22 \mu \mathrm{~F}, 25 \mathrm{~V}$, Ceramic, X5R, 1206	GRM31CR61E226KE15L	Murata
22	1	C31	$\begin{aligned} & 4.7 \mu \mathrm{~F}, \pm 10 \%, 25 \mathrm{~V}, \text { Ceramic, } \mathrm{X} 7 \mathrm{R},-55^{\circ} \mathrm{C} \sim \\ & 125^{\circ} \mathrm{C}, 0805 \end{aligned}$	TMK212AB7475KG-T	Taiyo Yuden
23	1	CON2	CONN, TERM BLOCK, HDR, 5.08MM, 8 POS, 90ㅇ, Horizontal, RA	1757307	Phoenix Contact
24	1	CON3	CONN, TERM BLOCK, HEADER, 5.08 MM, 6 POS, 90°, Horizontal, RA	1757284	Phoenix Contact
25	1	D1	$\begin{aligned} & 150 \mathrm{~V}, 1 \mathrm{~A}, \text { Ultrafast Recovery, } 25 \mathrm{~ns}, \text { DO- } \\ & 214 \mathrm{AC} \end{aligned}$	ES1C-13-F	Diodes, Inc.
26	1	D2	Diode ZENER 24 V 500 mW SOD123	MMSZ5252BT1G	ON Semi
27	1	D3	Diode, Gen Purp, Fast Recovery $=<35 n \mathrm{n}$, $>$ 500 mA (Io), $400 \mathrm{~V}, 5$ A,POWERDI5	PDU540-13	Diodes, Inc.
28	1	D4	$600 \mathrm{~V}, 1 \mathrm{~A}$, Ultrafast Recovery, 30 ns , SOD57	BYV26C	Philips
29	1	D5	Diode, SCHOTTKY, $100 \mathrm{~V}, 0.075$ A, SOD123	BAT46W-TP	Micro Commercial
30	1	D6	Diode, ZENER 16 V 500 mW SOD123	MMSZ5246B-7-F	Diodes, Inc.
31	1	F1	2 A, 250 V, Slow, TR5	37212000411	Wickman
32	1	J1	2 Position (1×2) header, 7.5 mm pitch, Vertical	1766660	Phoenix
33	4	$\begin{gathered} \hline \text { JP1 } 1417 \\ 25 \\ \hline \end{gathered}$	Wire Jumper, Insulated, \#24 AWG, 0.5 in	C2003A-12-02	Gen Cable
34	1	JP2	Wire Jumper, Insulated, \#24 AWG, 1.9 in	C2003A-12-02	Gen Cable
35	1	JP3	Wire Jumper, Insulated, \#24 AWG, 0.4 in	C2003A-12-02	Gen Cable
36	3	JP4 628	Wire Jumper, Insulated, \#24 AWG, 0.3 in	C2003A-12-02	Gen Cable
37	4	$\begin{gathered} \hline \text { JP5 } 2324 \\ 27 \\ \hline \end{gathered}$	Wire Jumper, Insulated, \#24 AWG, 0.2 in	C2003A-12-02	Gen Cable
38	5	$\begin{gathered} \text { JP7 } 81315 \\ 26 \end{gathered}$	Wire Jumper, Insulated, \#24 AWG, 0.8 in	C2003A-12-02	Gen Cable
39	1	JP9	Wire Jumper, Insulated, \#24 AWG, 1.1 in	C2003A-12-02	Gen Cable
40	4	$\begin{gathered} \hline \text { JP10 } 1218 \\ 21 \\ \hline \end{gathered}$	Wire Jumper, Insulated, \#24 AWG, 0.7 in	C2003A-12-02	Gen Cable
41	1	JP11	Wire Jumper, Insulated, \#24 AWG, 0.9 in	C2003A-12-02	Gen Cable

42	2	JP16 JP22	Wire Jumper, Insulated, \#24 AWG, 0.6 in	C2003A-12-02	Gen Cable
43	2	JP19 JP20	Wire Jumper, Insulated, \#24 AWG, 1.2 in	C2003A-12-02	Gen Cable
44	1	L1	$15 \mathrm{mH}, 1.1 \mathrm{~A}$, Common Mode Choke	B82732R2112B30	Epcos
45	1	L2	$200 \mu \mathrm{H}$, Common mode choke, 12×6 X 4		
46	1	L3	$10 \mu \mathrm{H}$, Unshielded Wire Wound Inductor, 3.45 A, $15 \mathrm{~m} \Omega$ Max, Radial, Vertical Cylinder	18R103C	Murata
47	8	$\begin{gathered} \hline \text { MTG_HOLE1 } \\ -8 \end{gathered}$	Mounting Hole M 3		
48	1	Q1	MOSFET, N-Channel, $40 \mathrm{~V}, 36 \mathrm{~A}$ (Tc), 3.5 W (Ta), 7.8W (Tc), Surface Mount, 8-SO	SI4154DY-T1-GE3	Vishay
49	1	Q2	MOSFET, N-Channel, $60 \mathrm{~V}, 60 \mathrm{~A}$ (Tc), 68 W (TC), PowerPAK® SO-8, PowerPAK SO-8	SQJA62EP-T1_GE3	Vishay
50	1	R1	NTC Thermistor, 10Ω, 1.7 A	CL-120	Thermometrics
51	4	$\begin{gathered} \hline \text { R2 R5 R18 } \\ \text { R22 } \\ \hline \end{gathered}$	RES, $10 \mathrm{k} \Omega, 1 \%, 1 / 8 \mathrm{~W}$, Thick Film, 0805	ERJ-6ENF1002V	Panasonic
52	6	$\begin{gathered} \text { R3 R4 R8 } \\ \text { R9 R10 R20 } \\ \hline \end{gathered}$	RES, $10 \Omega, 1 \%, 1 / 8 \mathrm{~W}$, Thick Film, 0805	ERJ-6ENF10ROV	Panasonic
53	1	R6	RES, 100Ω, $5 \%, 1 / 8 \mathrm{~W}$, Thick Film, 0805	ERJ-6GEYJ101V	Panasonic
54	1	R7	RES, $390 \mathrm{k} \Omega, 5 \%, 1 / 4 \mathrm{~W}$, Thick Film, 1206	ERJ-8GEYJ394V	Panasonic
55	1	R11	RES, $121 \mathrm{k} \Omega, 1 \%, 1 / 8 \mathrm{~W}$, Thick Film, 0805	ERJ-6ENF1213V	Panasonic
56	2	R12 R16	RES, $3.30 \mathrm{k} \Omega, 1 \%, 1 / 8 \mathrm{~W}$, Thick Film, 0805	ERJ-6ENF3301V	Panasonic
57	1	R13	RES, $10 \Omega, 1 \%, 1 / 4 \mathrm{~W}$, Thick Film, 1206	ERJ-8ENF10R0V	Panasonic
58	1	R14	RES, $18 \Omega, 5 \%, 1 / 4 \mathrm{~W}$, Thick Film, 1206	ERJ-8GEYJ180V	Panasonic
59	1	R15	RES, $68 \mathrm{k} \Omega, 5 \%, 1 / 8 \mathrm{~W}$, Thick Film, 0805	ERJ-6GEYJ683V	Panasonic
60	1	R17	RES, $47 \Omega, 5 \%, 1 / 8 \mathrm{~W}$, Carbon Film	CF18JT47R0	Stackpole
61	1	R19	RES, 39 k , , 5\%, 1/8 W, Thick Film, 0805	ERJ-6GEYJ393V	Panasonic
62	1	R21	RES, $47.0 \Omega, 1 \%, 1 / 8 \mathrm{~W}$, Thick Film, 0805	ERJ-6ENF47ROV	Panasonic
63	1	R34	RED, $15 \mathrm{~K} \Omega$		
64	2	R23 R24	RES, $100 \mathrm{k} \Omega, 1 \%, 1 / 8 \mathrm{~W}$, Thick Film, 0805	ERJ-6ENF1003V	Panasonic
65	1	R25	RES, $100 \mathrm{k} \Omega, 5 \%, 1 / 8 \mathrm{~W}$, Thick Film, 0805	ERJ-6GEYJ104V	Panasonic
66	2	R26 R27	RES, $1.00 \mathrm{k} \Omega, 1 \%, 1 / 8 \mathrm{~W}$, Thick Film, 0805	ERJ-6ENF1001V	Panasonic
67	2	R28 R29	RES, $2 \mathrm{M} \Omega, 5 \%, 1 / 8 \mathrm{~W}$, Thick Film, 0805	KTR10EZPJ205	Rohm
68	1	R30	RES, 22 k , , 5\%, 1/8 W, Thick Film, 0805	ERJ-6GEYJ223V	Panasonic
69	1	T1	Bobbin, PQ26/20, Vertical, 12 pins	$\begin{aligned} & \hline \text { B65877B0000R097 } \\ & \text { B65878E0012D001 } \\ & \hline \end{aligned}$	TDK
70	1	U1	InnoMux - Multi output controller	IMX102U	Power Integrations
71	1	U2	InnoSwitch3-MX - Primary + Secondary side Flyback Controller	INN3468C	Power Integrations
72	1	VDR1	275 VAC, $45 \mathrm{~J}, 10 \mathrm{~mm}$, RADIAL	V275LA10P	Littlefuse
73	1	VR1	DIODE ZENER 20 V 500 mW SOD123	MMSZ5250B-7-F	Diodes, Inc.
74	1	VR2	DIODE ZENER 15 V 500 mW SOD123	MMSZ5245B-7-F	Diodes, Inc.

Table 2 - DER-636 Bill of Materials

8 PI Expert Design Tool output

PI Expert is a continuously developing tool and later versions may give different, but improved results.

Inno_MUX_Flyback_122118; Rev.1.1; Copyright Power Integrations 2018	INPUT	INFO	Output	Unit	Description
Power Supply Basic Parameters					
VACMIN	90		90	[V]	Minimum Input AC Voltage
VACNOM			115	[V]	Nom. AC Voltage - universal designs low line
VACMAX			265	[V]	Maximum Input AC Voltage
PO			36.88	[]	Total Output Power
PO_MAX			40	[W]	Total Maximum Output Power
FL			50	[Hz]	Line Frequency
VMIN			86.9	[V]	Minimum Instantaneous DC Input Voltage at Min Mains
VMIN_AVG			105.8	[V]	Avarage input voltage calculated at VAC MIN
OUT_NUM			2		Select number of Outputs
DESIGN_RESULT			Design Passed		Design Result
Input Section					
CIN	100		100	[uF]	Input Capacitance
IAVG			0.51	[A]	Average Diode Bridge Current (DC Input Current)
CV Output Specification					
VO1			5	[V]	Output 1 Voltage
IO1			3	[A]	Output 1 Current
VO1_TOL_PCT			0	[\%]	Output 1 Voltage tolerance
N1_PCT			86	[\%]	Converter Efficiency for Output 1
Z1_PCT			60	[\%]	Secondary loss allocation factor for Output 1
CONN1_TYPE	AC_STACK		AC_STACK		Winding connection type
LED Output Specification					
VO1			35	[V]	Output 2 Voltage
IO1			0.625	[A]	Output 2 Current
VO1_TOL_PCT			14.29	[\%]	Output 2 Voltage tolerance
N1_PCT			86	[\%]	Converter Efficiency for Output 2
Z1_PCT			60	[\%]	Secondary loss allocation factor for Output 2
CONN1_TYPE	AC_STACK		AC_STACK		Winding connection type
Other Design Conditions					
VOR			87.27	[V]	Maximum Reflected Voltage Target
VOR_MARG_12			0.95		VOR Margin Between Output 1 and 2 reflected Voltage
KP_MIN	1.018		1.018		Min. Current Continuity Factor for Highest Voltage Output
Device Parameters					
DEVNAME	INN3468		INN3468		PI Device Name
DEVICE_MODE	Increased		Increased		Device Current Limit Mode
ILIMITTYP			2.2	[A]	Typical Current Limit
BVDSS	650		650		Main Switch Brake Down Voltage
Transformer Electrical Parameters					
LP_NOM			284.83	[uH]	Nominal Primary Inductance
LP_TOL	2		2	[\%]	Primary Inductance Tolerance
NP	24		24		Calculated Primary Winding Total Number of Turns
BM_TESLA			0.22	[T]	Maximum Flux Density
BP_TESLA			0.23	[T]	Peak Flux Density
Transformer Mechanical Parameters					
CR_TYPE	PQ26/20		PQ26/20		Core Type

BB_TYPE		$\begin{gathered} \hline \text { PQ26/20 [NP],- } \\ 1(\mathrm{P} 6+\mathrm{S} 6) \\ \hline \end{gathered}$		Bobbin Type
AE		119	[mm2]	Core cross section
BW		9.2	[mm]	Bobbin Winding Width
VE		5490	[mm3]	Core Volume
LG		0.278	[mm]	Estimated Gap Length
AL		6170		Ungapped Core Specific Inductance
ALG		494		Gapped Core Specific Inductance
Transformer Construction				
TRFCASE	P1-S2-P2-S1	P1-S2-P2-S1		
BSFF		84.6		Bobbin Stack Fill Factor
Primary Bias				
NB	3	3	Turns	Turns Primary Bias
STRBP		1	Strands	Primary Bias Winding - Strands
NBLP		1	Layers	Number of Primary Bias Layers
WIRETYPEBIASP	Grade2_mm	Grade2_mm		Primary Bias Wire Insulation Type
AWG_BIASP	29	29	[AWG]	Primary Bias AWG
WD_MM_BIASP		0.329	[mm]	Primary Bias Wire Diameter
CD_MM_BIASP		0.286	[mm]	Primary Bias Wire Copper Diameter
BFK_BIASP		11	[\%]	Primary Bias Layer Fill Coeficient
NBS		1		Turns Secondary Bias
Primary winding				
NP	24	24	Turns	Total Number of Primary Turns
NP_SECT1		12	Turns	Primary first part - First Winding Section From The Core
NP_SECT2		12	Turns	Primary second part - Third Winding Section From The Core
WIRETYPE	Grade2_mm	Grade2_mm		Primary Winding Wire Insulation Type
STR	2	2	Strands	Primary Winding - Strands
NPL_P1		1	Layers	Primary first part Layers
NPL_P2		1	Layers	Primary second part Layers
AWG_P		28	[AWG]	Primary Winding AWG
WD_MM		0.367	[mm]	Primary Winding Wire Diameter
CD_MM		0.321	[mm]	Primary Winding Wire Diameter Copper Diameter
BFK		96	[\%]	Primary Winding Layer Fill Coeficient
APSMM_ACT		5.35	[$\mathrm{A} / \mathrm{mm} 2]$	Primary Actual Current Density
CV Output				
NS1_STACK		2	Turns	Output 1 Number of Turns
NS1	2	2	Turns	Sec. Winding 1 -Fourth Winding Section From The Core
WIRETYPE1	TIW_mm	TIW_mm		Sec. Winding 1 Wire Insulation Type
STR1	3	3	Strands	Sec. Winding 1 - Strands
NSL1		1	Layers	Sec. Winding 1 Layers
AWGS1	22	22	[AWG]	Secondary 1 Winding AWG
WDS1_MM		0.871	[mm]	Secondary 1 Winding Wire Diameter
CDS1_MM		0.644	[mm]	Secondary 1 Winding Wire Copper Diameter
BFK1		85	[\%]	Secondary 1 Winding Layer Fill Coeficient
APSMM_ACT1		7.96	[$\mathrm{A} / \mathrm{mm} 2]$	First Secondary Winding Actual Current Density
LED Output				
NS2_STACK		9	Turns	Output 2 Number of Turns
NS2	11	11	Turns	Sec. Winding 2 - Fifth Winding Section From The Core
WIRETYPE2	TIW_mm	TIW_mm		Sec. Winding 2 Wire Insulation Type
STR2		1	Strands	Sec. Winding 2 - Strands
NSL2		1	Layers	Sec. Winding 2 Layers
AWGS2	24	24	[AWG]	Secondary 2 Winding AWG
WDS2_MM		0.739	[mm]	Secondary 2 Winding Wire Diameter

LED Output				
VO1		35	[V]	Output 2 Voltage
IO1		0.63	[A]	Output 2 Current
PO1		21.88	[W]	Output 2 Power
PO1_MAX		25	[W]	Output 2 Maximum Power
VD1		0	[V]	Estimated Forward Voltage across Output 2 Diode/Rectifier
KP1		1.02		Current Continuity Factor during Output 2 Conduction
DMAX1		0.5		Duty Cycle during Ouput 2 Conduction
ISP1		4.74	[A]	Secondary Peak Current during Ouput 2 Conduction
ISRMS1		1.47	[A]	Output 2 RMS Current
IRIPPLE1		1.33	[A]	Output 2 Capacitor - RMS Ripple Current
LED Output Components				
VO1_RIPPLE		0.1	[V]	Output 2 Ripple Voltage
COUT1		133.45	[uF]	Minimum Output 2 Capacitance Required
RESR		0.05	[Ohm]	Output 2 Capacitor ESR Value
PLOSS_COUT1		0.09	[W]	Output 2 Capacitor ESR losses
PIVS1		180.54	[V]	Output 2 Diode Voltage
OSF1_RDSON		-	[Ohm]	Selection FET 2 ON Resistance
PLOSS_SF1		-	[W]	Selection FET 2 ON Losses
PLOSS_OD1		0	[W]	Output Diode 2 Losses
Primary Bias				
NB	3	3		Primary Bias Winding Turns
VB	14	14	[V]	Primary Bias Voltage at maximum load
VF_BIAS		0.7	[V]	Primary Bias Voltage Forward Drop
VREVERSE_BIASP		60.85	[V]	Primary Bias Reverse Voltage
CBIAS		22	[uF]	Primary Bias Capacitor
VSB		-		Secondary Bias Voltage
NBS		1		Turns Secondary Bias
VF_BIASS		0.7	[V]	Secondary Bias Rectifier Voltage Forward Drop
VREVERSE_BIASS		54.35		Secondary Bias Rectifier Reverse Voltage
Tolerance Analysis				
Output_Index	One	One		Output to be displayed
VO1_VO2_VO3_Corner	$\begin{gathered} \text { nom-nom- } \\ \text { nom } \\ \hline \end{gathered}$	nom-nom-nom		VO tolerance corner to be dispalyed
ILIMIT_LP_Corner	nom-nom	nom-nom		Curr.Limit/Inductance combination to be dispalyed
VOUT1_ACTUAL		5	[V]	Actual Output Voltage
VOR1		60	[V]	Reflected voltage
IO1		3	[A]	Output Current
PO1_ACTUAL		15	[W]	Actual Output Power
FS1		65502.43	[Hz]	Switching frequency
DMAX1		0.4		Duty cycle
KP1		0.92		Current Continuity Factor
TON1		6.15	[us]	Controller ON Time
TOFF1		9.12	[us]	Controller OFF Time
IP1		2.09	[A]	Primary peak current
ISRMS1		7.44	[A]	Secondary RMS Current
IRIPPLE1		6.81	[A]	Output Capacitor - RMS Ripple Current
BM		2084.24	[Gauss]	Maximum Flux Density (Steady State Condition)
BP		2194.06	[Gauss]	Peak Flux Density (@ 132kHz transitory condition)
IRMS_AVG		0.769	[A]	Primary RMS current at VMIN AVG (VO1=Nom, VO2=Nom, VO3=Max) or (VO1=Nom, VO2=Max)

Errors, Warnings, Information											Although the design has passed the user should validate functionality on the bench. Please check the variables listed.
IDS_INFO			-	Design variables whose values exceed electrical/datasheet specifications.							
IDS_WARN			-	The list of design variables which result in an infeasible design.							
IDS_ERR			-								

Table 3 - PI Expert Design Tool output

9 Transformer (T1) Specification

9.1 Electrical Diagram

Figure 11 - Transformer Electrical Diagram.

9.2 Winding Stack Diagram

Figure 12 - Transformer Winding Stack

9.3 Electrical Specifications

Electrical Strength	1 second, 60 Hz, from pins $1,2,3,4,5,6$ and FLO to pins 7, 8, 11 and 12.	3000 VAC
Primary Inductance	Pin $5-$ pin 6, all other windings open, measured at $10 \mathrm{kHz}, 0.4 \mathrm{~V}_{\text {RMS. }}$	$285 \mu \mathrm{H} \pm 3 \%$
Resonant Frequency	Pin $5-$ pin 6, all other windings open	$1100 \mathrm{kHz}(\mathrm{Min})$.
Primary Leakage Inductance	Pin $5-$ pin 6, with pins 7,8 and 9 shorted and, 11 and 12 shorted, measured at 10 kHz, $0.5 \mathrm{~V}_{\text {RMS. }}$	$4 \mu \mathrm{H}$ (Max.)

Table 4 - Transformer Electrical Specifications

9.4 Materials List

Item	Description
[1]	Core: PQ26/20, N97, TDK - B65877B0000R097.
[2]	Bobbin: TDK - B65877BE0012D001. PQ26/20 bobbin with extended skirt between pin rows.
[3]	TEX-E Wire: 0.65 mm Triple Insulated.
[4]	TEX-E Wire: 0.55 mm Triple Insulated.
[5]	TEX-E Wire: 0.2 mm Triple Insulated.
[6]	Magnet Wire: 0.315 mm , Grade 2 ECW.
[7]	Magnet Wire: 0.28 mm , Grade 2 ECW.
[8]	Barrier Tape: 3M 1298 Polyester Film, 1 mil Thickness, 6 mm Wide.
[9]	Barrier Tape: 3M 1298 Polyester Film, 1 mil Thickness, 9 mm Wide.
[10]	Barrier Tape: 3M 1298 Polyester Film, 1 mil Thickness, 12 mm Wide.
[11]	Bus Wire: \#30 AWG.
[12]	Varnish: Dolph BC-359.

Table 5 - Transformer Materials List

9.5 Construction

Winding Preparation	Place the bobbin on the mandrel with the pin side to the right. Winding direction is clockwise i.e. top side moving away from operator.
WD1 $1 / 2$ Primary	Start at pin 6, bring wires across through slot between pins 5 and 6 . Close wind 12 turns, 2 strands of wire Item [6] in 1 layer with tight tension to fill the bobbin width in a neat flat wind.
Insulation	Use $1 / 2$ turn of tape, Item [9], to hold winding in place. Bend end of winding across to exit in slot between Pins 4 and 5 . Complete the $1 / 2$ turns of tape to secure the Primary 1 winding end in place. Terminate wind on pin 4.
WD2 Primary Bias	Start at pin 1, bring wire across through slot between pins 1 and 2 . Close wind 3 turns, single strand Item [7] with tight tension. Take wire through slot between pins 1 and 2 and terminate on pin 2.
WD3 Screen 1	Take 3 strands of Item [7], each 750 mm long. Lay the ends of the strands next to WD2 and secure with a small piece of tape as shown. Carefully wind 8 turns tri-filar winding, close wound tight tension, being careful not to pull the free ends out of their securing tape.
Insulation	Use $1 / 2$ turn of tape, Item [9], to hold winding in place. Bend end of winding across to exit in slot between pins 2 and 3 . Complete the $11 / 2$ turns of tape to secure the Screen 1 winding end in place. Terminate the winding on pin 3
WD4 LED Secondary	Start at pin 7, bring the wire across through slot between pins 7 and 8. Close wind 9 turns, single strand of wire Item [4] in 1 layer with tight tension to fill the bobbin width in a neat flat wind. Cut to leave 5 cm of free wire and secure it to the mandrel chuck with tape
Insulation	Secure wind in place with $11 / 2$ turns of tape Item [9].
WD5 Unregulated CV2 (Secondary bias wind)	Start winding on pin 10, bring wire across through slot between pins 10 and 11. Wind 1 turn, single strand of Item [5]. Bring back through slot between pins 10 and 11 and terminate on pin 11.
WD6 CV1 Secondary	Take $3 \times 24 \mathrm{~cm}$ lengths of Item [3]. Start 2 strands on pin 12 and the $3^{\text {rd }}$ strand on pin 11. Pins 11 and 12 are connected together via the PCB. Take across through slot between pins 11 and 12 . Wind 2 turns tri-filar and secure the ends to the mandrel

	chuck for termination later.
Insulation	Secure winding with $11 / 2$ layers of tape Item [9]
WD7 Screen 2 and 3	Take 2 stands of Item [7] 125 cm long and temporarily secure to pin 3. Take across through the slot between pins 2 and 3 . Wind 14 turns bi-filar, close winding and tight tension as neatly as possible.
Termination and insulation of Screens 2and3	Secure with $1 / 2$ turn of tape Item [9]. Determine which ends belong to Screen 2 and Screen 3. A multimeter, different colored strands or labelling would be helpful. Terminate Screen 2 'START' and Screen 3 'FINISH' to pin 3. Cut Screen 2 'FINISH' and Screen 3 'START' to make unconnected buried ends. Ensure the bare ends cannot touch. Complete $11 / 2$ turns of tape to secure ends in place. By reference to the Winding Stack Diagram it can be seen that Screens 2 and 3 form 2 counter wound coils and will approximately emulate an equi-potential screen such as a copper foil screen, hence the particular instructions for this winding.
	Start at pin 4 and bring wires across through slot between pins 4 and 5 . Close wind 12 turns, 2 strands of wire Item [6] in 1 layer with tight tension to fill the bobbin width in a neat flat wind as possible.
Insulation	Secure wind with 1 layer of tape Item [9]. Take wind ends across the bobbin and through the slot between pins 3 and 4. Complete the $11 / 2$ turns of tape to secure.
Termination	Bring the Primary 2 ends back up and pass through the slot between pins 4 and 5 and terminate at pin 5.
Termination and insulation CV1 Secondary wind	Bend down the ends of CV1 and LED secondaries and secure with 2 turns of tape, Item [9]. Take the 3 ends of CV1 secondary winding and pass through the slot between pins 8 and 9 and terminate 2 ends on pin 9 and 1 end on pin 8 . Pins 8 and 9 are connected together via the PCB. Take the end of the LED secondary winding through the slot between pins 10 and 11 and terminate on pin 11.
Gap Core	Gap core to $285 \mu \mathrm{H} \pm 5 \%$

Table 6 - Transformer Construction Instructions

9.6 Winding IIlustration

N.B. a bobbin without the extended skirt has been used in these photographs to improve termination visibility.

		Bring the Primary 2 ends back up and pass through the slot between pins 4 and 5 and terminate at pin 5.
Terminating CV1 Secondary Winding		Bend down the ends of CV1 and LED secondaries and secure with 2 turns of tape, Item [9].
		Take the 3 ends of CV1 secondary winding and pass through the slot between pins 8 and 9 and terminate 2 ends on pin 9 and 1 end on pin 8. Pins 8 and 9 are connected together via the PCB. Take the end of the LED secondary winding through the slot between pins 10 and 11 and terminate on pin 11. Gap core to achieve $285 \mu \mathrm{H}$.

Table 7 - Transformer Winding Illustrations

10 Improvement of Voltage Isolation from Core to Pins 7 and 12

These preparations are to improve ESD and surge performance of the transformer. Ideally a bobbin with an extended secondary molding to the pins should be used, or flying leads on the secondaries.
N.B. This bobbin has the extended skirt for accuracy of instructions.

- Once windings complete, cut a piece of $7 \mathrm{~cm} \times 12 \mathrm{~mm}$ tape Item [10] and apply as shown, to secondary side edge. The top edge of the tape is to be at the same level as the extended bobbin skirt as shown.
-

- Fold both sides over to stick to the sides of the secondary pin support moldings.

- With the back edge of a scalpel, push the tape to stick to the inner surfaces as shown, ensure the tape goes right up to the corners.

- With a sharp scalpel, trim both ends of the tape to be flush with the outside corner of the bobbin as shown.

- Cut a piece of $6 \mathrm{~cm} \times 12 \mathrm{~mm}$ tape Item [10] and apply it side surface of the core half way along as shown. The edge of the tape is to be level with the inside edge of the bottom of the core as shown.

- With the back edge of a scalpel or similar, push the tape to the core surface and ensure it goes right into the corners. Take care not to pierce the tape.

- Press the centre of the free tape and push it down to stick to the core.

Press tape down here.

- Press tape to core to leave 2 tabs, then fold and stick those tabs down.

- Insert insulated core half into the underside of the bobbin with the tape next to the secondary pins.

- Insert top core half and secure with 2 layers of tightly wound 6 mm tape Item [8].

- Solder a 200 mm length of \#30 AWG tinned copper wire to pin 3, leading towards the core.
- Where it reaches the core surface, bend at a right angle to the nearest corner edge then wind 2 turns tightly around the core.
- Solder wire end to wire going to pin 3 to secure.
- Secure the wire to the core with a length of tape Item [8].
- Varnish dip and cure in oven as required.

3. Test

			Pins	CV (8-12)	LED (7-12)
L1	$\mu \mathrm{H}$	$\begin{gathered} \hline 285 \\ \pm 5 \% \end{gathered}$	5-6	open	open
L1 ${ }_{\text {s11 }}$		~ 18.24		short	open
$\mathbf{L 1}_{\text {s12 }}$		~ 4.86		open	short
L1 ${ }_{\text {s }}$		~3.92		short	short

Table 8 - Transformer Parameter Measurements
Measured at $10 \mathrm{kHz}, 0.5 \mathrm{~V}_{\mathrm{RMS}}$.

11 Performance Data

11.1 Efficiency

Figure 13 - Full Load (40 W) Efficiency vs. Line; Room Temperature

Figure 14 - Efficiency vs Output Power with 30 V LED Strings

Figure 15 - Efficiency vs Output Power with 40 V LED Strings.

11.2 CV1 Load Regulation and Cross-Regulation

Points taken at 90, 115, 230 and 265 VAC, whilst LED current was incremented from 80 mA to 625 mA in 6 steps for LED voltages of 30 V and 40 V , and CV1 current incremented from 3 mA to 3 A in 6 steps.

Figure $\mathbf{1 6}$ - CV1 Cross Regulation at All Conditions.

11.3 LED Current Cross Regulation with CV1 Load and VAC

Figure 17 - Effect of CV1 Load and VAC Input on LED Current, 30 V LED Strings.

Figure 18 - Effect of CV1 Load and VAC Input on LED Current, 40 V LED Strings.

11.4 LED Dimming and String Current Matching

Figure 19 - Total LED Current vs. ADIM Input Voltage for 30 V LED Strings.

Figure 20-4 x 30 V String LED Current vs. ADIM Voltage at 90 VAC.

Figure 21 - LED String Current Matching Error for 30 V LED Strings at 90 VAC.

Figure $22-4 \times 30 \vee$ String LED Current vs. ADIM Voltage at 115 VAC.

Figure 23 - LED String Current Matching Error for 30 V LED Strings at 115 VAC.

Figure $24-4 \times 30 \mathrm{~V}$ String LED Current vs. ADIM Voltage at 230 VAC.

Figure 25 - LED String Current Matching Error for 30 V LED Strings at 230 VAC.

Figure $26-4 \times 30 V$ String LED Current vs. ADIM Voltage at 265 VAC.

Figure 27 - LED String Current Matching Error for 30 V LED Strings at 265 VAC.

Figure 28 - Total LED Current vs. ADIM Input Voltage for 40 V LED Strings.

Figure 29-4x40V String LED Current vs. ADIM Voltage at 90 VAC.

Figure 30 - LED String Current Matching Error for 40 V LED Strings at 90 VAC.

Figure 31-4 x 40 V String LED Current vs. ADIM Voltage at 115 VAC.

Figure 32 - LED String Current Matching Error for 40 V LED Strings at 115 VAC.

Figure $33-4 \times 40 \mathrm{~V}$ String LED Current vs. ADIM Voltage at 230 VAC.

Figure 34 - LED String Current Matching Error for 40 V LED Strings at 230 VAC.

Figure $35-4 \times 40 \mathrm{~V}$ String LED Current vs. ADIM Voltage at 265 VAC.

Figure 36 - LED String Current Matching Error for 40 V LED Strings at 265 VAC.

11.5 Input Power in Standby Mode and with 10 mA Load on 5 V

	VAC [V]				
$\begin{gathered} \hline \text { I-VCV2 } \\ {[\mathrm{mA}]} \end{gathered}$	90	6.5			
VCV2 [V]		6.43			
Pin [mW]		205			
$\begin{gathered} \hline \text { f STDBY } \\ \text { [kHz] } \end{gathered}$		2.27			
V C30 [V]		8.5	Primary	bias voltage	
V C31 [V]		5.41	BPP pin		
$\begin{gathered} \hline \text { I-VCV2 } \\ {[\mathrm{mA}]} \end{gathered}$	115	6.5			
VCV2 [V]		6.38			
Pin [mW]		209			
$\begin{gathered} \hline \text { f STDBY } \\ {[\mathrm{kHz}]} \\ \hline \end{gathered}$		2.4			
V C30 [V]		8.49	Primary	bias voltage	
V C31 [V]		5.42	BPP pin		
$\begin{gathered} \hline \text { I-VCV2 } \\ {[\mathrm{mA}]} \end{gathered}$	230	6			
VCV2 [V]		6.2			
Pin [mW]		244			
f STDBY [kHz]		1.69			
V C30 [V]		8.57	Primary	bias voltage	
V C31 [V]		5.43	BPP pin		
$\begin{gathered} \hline \text { I-VCV2 } \\ {[\mathrm{mA}]} \\ \hline \end{gathered}$	265	6			
VCV2 [V]		6.15	10.49 V	t full load	
Pin [mW]		262			
$\begin{gathered} \hline \text { f STDBY } \\ {[\mathbf{k H z}]} \end{gathered}$		1.35			
V C30 [V]		8.58	Primary bias voltage		
V C31 [V]		5.43	BPP pin		

Table 9-Standby Mode Test Results
Input power, primary and secondary bias voltage, secondary bias current and switching frequency in Standby Mode.

Figure 37 - Input Power vs. Input Voltage, Room Temperature.

12 Waveforms

12.1 Load Transient Response

Test was performed at 230 VAC, CV1 load set to 3 A, 40 V LED panel used.
$50 \mathrm{~mA}-3 \mathrm{~A}-50 \mathrm{~mA}$ transient load applied to CV1 output at a 10 Hz rate, 50% duty cycle.

Figure 38-5 V Output Load Transient 50 mA to 3 A with 63 mA Total LED Current.

Supply voltage=230 VAC.
Resulting undershoot=315 mV.

Figure 39-5V Output Load Transient 3A to 50 mA with 63 mA Total LED Current.

Supply voltage=230 VAC.
Resulting undershoot $=330 \mathrm{mV}$.

Figure 40-5V Output Load Transient 50 mA to 3 A with 625 mA Total LED Current.

Supply voltage $=230 \mathrm{VAC}$.
Resulting undershoot=235 mV.

Figure 41-5V Output Load Transient 3A to 50 mA with 625 mA Total LED Current.

Supply voltage=230 VAC.
Resulting overshoot $=215 \mathrm{mV}$.

12.2 Switching Waveforms

12.2.1 InnoSwitch3-MX Voltage Waveforms

Figure 42 - Drain Voltage Waveforms. 90 VAC Input, Full Load, (331 $\mathrm{V}_{\text {max }}$).
$\mathrm{V}_{\text {DRain }} 50 \mathrm{~V}, 50 \mathrm{~ms}, 20 \mu \mathrm{~s} / \mathrm{div}$.

Figure 43 - Drain Voltage Waveforms. 265 VAC Input, Full Load, (596 V ${ }_{\text {max }}$).

Upper: $\mathrm{V}_{\text {DRAIN }} 100 \mathrm{~V}, 50 \mathrm{~ms}, 10 \mu \mathrm{~s} / \operatorname{div}$.

12.2.2 SR FET Voltage Waveforms

Figure 44 - SR FET Voltage Waveforms. 265 VAC Input, Full Load, (42.1 $\mathrm{V}_{\text {MAX }}$).
$\mathrm{V}_{\mathrm{DS}}: 10 \mathrm{~V} / 50 \mathrm{~ms}, 10 \mu \mathrm{~s} / \mathrm{div}$.

12.2.3 Q1 5 V Selection MOSFET Voltage Waveforms

Figure 45 - Q1 Selection MOSFET Voltage Waveforms, 265 VAC Input.
Full Load (12.55 $\mathrm{V}_{\text {MAX }}$), (-4.8 V -ve max). $\mathrm{V}_{\mathrm{DS}}: 5 \mathrm{~V} / 50 \mathrm{~ms}, 10 \mu \mathrm{~s} / \mathrm{div}$.

Figure 46 - Q1 Selection MOSFET Voltage Waveforms During Start-Up.
$2^{\text {nd }}$ Pulse is Worst Case.
265 VAC Input, Full Load ($25 \mathrm{~V}_{\text {MAX }}$). $\mathrm{V}_{\mathrm{DS}}: 5 \mathrm{~V} / 50 \mathrm{~ms}, 2 \mu \mathrm{~s} / \mathrm{div}$.

12.2.4 D3, LED Output Diode Voltage Waveforms

Figure 47 - D3, LED Output Diode Voltage Waveforms, 265 VAC Input.

Full Load (197.5 $\mathrm{V}_{\text {max }}$),
$\mathrm{V}_{\mathrm{Ds}}: 50 \mathrm{~V} / 50 \mathrm{~ms}, 10 \mu \mathrm{~s} / \mathrm{div}$.

Figure 48 - D3, LED Output Diode Voltage Waveforms During Start-Up.
$2^{\text {nd }}$ Pulse is Worst Case.
265 VAC Input, Full Load (199 V ${ }_{\text {max }}$). $\mathrm{V}_{\mathrm{DS}}: 50 \mathrm{~V} / 50 \mathrm{~ms}, 5 \mu \mathrm{~s} / \mathrm{div}$.

12.2.5 Start-Up Waveforms

Channel 1	Channel 2	Channel 3	Channel 4	Channel 5	Channel 6	Channel 8
Pri FET	CV1 5V	V led Output	BP5V [V]	U1/2 REQ pin	U1/2 ACK	LED Output
$\mathrm{Vds}[\mathrm{V}]$	Output $[\mathrm{V}]$	$[\mathrm{V}]$		pin $[\mathrm{V}]$	Current [A]	

Figure 49 - Input 90 VAC. Initial Start-up 1st 10 ms .

Output CV1 = 5 V @ 15 W , $\mathrm{LED}=40 \mathrm{~V} @ 625 \mathrm{~mA}$.

Figure 51 - Input 115 VAC. Initial Start-up 1st 10 ms .
Output CV1 = 5 V @ 15 W , LED = 40 V @ 625 mA .

Figure 50 - Input 90 VAC. Full Start-Up Over 500 ms .
Output CV1 = 5 V @ 15 W , LED $=40 \mathrm{~V} @ 625 \mathrm{~mA}$.

Figure 52 - Input 115 VAC. Full Start-Up Over 500 ms .
Output CV1 = 5 V @ 15 W , LED $=40 \mathrm{~V} @ 625 \mathrm{~mA}$.

Figure 53 - Input 230 VAC. Initial Start-up 1st 10 ms .

Output CV1 = 5 V @ 15 W ,

$$
\mathrm{LED}=40 \mathrm{~V} @ 625 \mathrm{~mA} .
$$

Figure 55 - Input 265 VAC. Initial Start-up 1st 10 ms .
Output CV1 = $5 \mathrm{~V} @ 15 \mathrm{~W}$, LED $=40 \mathrm{~V} @ 625 \mathrm{~mA}$.

Figure 54 - Input 230 VAC. Full Start-Up over 500 ms. Output CV1 = 5 V @ 15 W , LED $=40 \mathrm{~V} @ 625 \mathrm{~mA}$.

Figure 56 - Input 265 VAC. Full Start-Up over 500 ms. Output CV1 = 5 V @ 15 W , $\mathrm{LED}=40 \mathrm{~V} @ 625 \mathrm{~mA}$.

12.2.6 Start-Up in Standby

Channel 1	Channel 2	Channel 3	Channel 4	Channel 5	Channel 6	Channel 8
Pri FET Vds [V]	CV1 5V	Output [V]	led Output	[V] $]$	BP5V [V]	U1/2 REQ pin $[\mathrm{V}]$
U1/2 ACK pin $[\mathrm{V}]$	LED Output Current [A]					

$\operatorname{Max}(11) 251 \mathrm{~V}$
$\operatorname{Max}(C 3) \quad 33.60 \mathrm{~V}$
Figure 57 - Input 90 VAC. Full Start-Up over 500 ms.

$$
\begin{array}{r}
\text { Output CV1 = } 5 \mathrm{~V} \text { @ } 15 \mathrm{~mA}, \\
\text { LED }=\text { Standby. }
\end{array}
$$

$\operatorname{Max}(11) 459 \mathrm{y}$
$\operatorname{Max}(C 3) 34.20 \mathrm{~V}$
Figure 59 - Input 230 VAC. Full Start-Up over 500 ms. Output CV1 = 5 V @ 15 mA , LED $=$ Standby.

Figure 58 - Input 115 VAC. Full Start-Up over 500 ms.

> Output CV1 = $5 \mathrm{~V} @ 15 \mathrm{~mA}$, LED $=$ Standby.

$\operatorname{Max}(01) 514 \mathrm{~V}$
$\operatorname{Max}(03) 34.20 \mathrm{~V}$
Figure 60 - Input 265 VAC. Full Start up over 500 ms .
Output CV1 = 5 V @ 15 mA , LED $=$ Standby.

12.3 Brown-In and Brown-Out

Channel 1	Channel 2	Channel 3
AC Input	LED Output	CV1 5 V
Ooltage	Output	
Voltage [V]	Voltage [V]	

Figure 61 - Brown-In and Brown-Out response, 90 VAC - 0 VAC - 90 VAC.

VAC Input (VAC)	Brown In Peak Voltage $\left(\mathbf{V}_{\text {PK }}\right)$	Brown In RMS Voltage $\left(\mathbf{V}_{\text {RMS }}\right)$	Brown Out Peak Voltage $\left(\mathbf{V}_{\text {PK }}\right)$	Brown Out RMS Voltage $\left(\mathbf{V}_{\text {RMS }}\right)$
90	106.96	75.63	94.00	66.47

Table 10 - Brown-In and Brown-Out response, 90 VAC - 0 VAC - 90 VAC Results

Channel 1	Channel 2	Channel 3
AC Input	LED Output	CV1 5 V
Output		
Voltage	Voltage [V]	Voltage [V]

Figure 62 - Brown-In and Brown-Out response, 265 VAC - 0 VAC - 265 VAC.

VAC Input (VAC)	Brown In Peak Voltage $\left(\mathbf{V}_{\text {PK }}\right)$	Brown In RMS Voltage $\left(\mathbf{V}_{\text {RMS }}\right)$	Brown Out Peak Voltage $\left(\mathbf{V}_{\text {PK }}\right)$	Brown Out RMS Voltage $\left(\mathbf{V}_{\text {RMS }}\right)$
265	106.27	75.15	94.04	66.50

Table 11 - Brown-In and Brown-Out response, 265 VAC - 0 VAC - 265 VAC Results.

12.4 Output Ripple Measurements

12.4.1 Ripple Measurement Technique

For DC output ripple measurements, a modified oscilloscope test probe was used in order to reject noise pick-up. Details of the probe modification are provided in the Figures below.

The 4987BA probe adapter is affixed with two capacitors tied in parallel across the probe tip. The capacitors include one (1) $0.1 \mu \mathrm{~F} / 100 \mathrm{~V}$ ceramic type and one (1) $10 \mu \mathrm{~F} / 50 \mathrm{~V}$ aluminum electrolytic. The aluminum electrolytic type capacitor is polarized, so proper polarity across DC outputs must be maintained (see below).

Figure 63 - Oscilloscope Probe Prepared for Ripple Measurement. (End Cap and Ground Lead Removed)

Figure 64 - Oscillocope Probe with modified BNC Adapter.
Probe Master (www.probemaster.com) 4987A BNC Adapter.
(Modified by adding two parallel decoupling capacitors and wires for ripple measurement)

12.4.1.1 Output CV1 (5 V) Voltage Ripple and noise.

Figure $65-\mathrm{V}_{\text {IN }}=90$ VAC. $\mathrm{V}_{\text {RIPLLE_CV1 }}=55.1 \mathrm{~m} \mathrm{~V}_{\text {PK-PK }}$. CH1: V_CV1, $12 \mathrm{mV} / \mathrm{div}$. (ac) , $1 \mathrm{~ms} / \mathrm{div}$.

Figure $67-\mathrm{V}_{\text {IN }}=230$ VAC. $\mathrm{V}_{\text {RIPPLE_CV1 }}=57.8 \mathrm{~m} \mathrm{~V}_{\text {PK-PK }}$. CH1: V_CV1, $12 \mathrm{mV} / \mathrm{div}$. (ac) , $1 \mathrm{~ms} / \mathrm{div}$.

Figure $66-\mathrm{V}_{\text {IN }}=115$ VAC. $\mathrm{V}_{\text {RIPPLE_CV1 }}=50.3 \mathrm{mV} \mathrm{P}_{\text {PK-PK }}$. CH1: V_CV1, $10 \mathrm{mV} / \mathrm{div}$. (ac), $1 \mathrm{~ms} / \mathrm{div}$.

Figure $68-\mathrm{V}_{\text {IN }}=265$ VAC. $\mathrm{V}_{\text {RIPPLE_CV1 }}=51.9 \mathrm{mV}_{\text {PK-PK }}$. CH1: V_CV1, $10 \mathrm{mV} / \mathrm{div}$. (ac) , $1 \mathrm{~ms} / \mathrm{div}$.

12.4.1.1.2 CV1 = $5 \mathrm{~V} 3 \mathrm{~A}, \mathrm{LED}=30 \mathrm{~V} 625 \mathrm{~mA}$

Figure $-\mathrm{V}_{\text {IN }}=90$ VAC. $\mathrm{V}_{\text {RIPPLE_CV1 }}=42.6 \mathrm{~m} \mathrm{~V}_{\text {PK-PK. }}$. CH1: V_CV1, $11 \mathrm{mV} / \operatorname{div}$ (ac), $1 \mathrm{~ms} /$ div.

Figure $70-\mathrm{V}_{\text {IN }}=230$ VAC. $\mathrm{V}_{\text {RIPPLE_CV1 }}=49.1 \mathrm{mV} \mathrm{V}_{\text {PK-PK }}$. CH1: V_CV1, $10 \mathrm{mV} / \mathrm{div}$. (ac) , $1 \mathrm{~ms} / \mathrm{div}$.

Figure $69-\mathrm{V}_{\text {IN }}=115$ VAC. $\mathrm{V}_{\text {RIPPLE_CV1 }}=44.0 \mathrm{~m} \mathrm{~V}_{\text {PK-PK }}$. CH1: V_CV1, $8 \mathrm{mV} / \mathrm{div}$ (ac) , $1 \mathrm{~ms} / \mathrm{div}$.

Figure $71-\mathrm{V}_{\text {IN }}=265$ VAC. $\mathrm{V}_{\text {RIPPLE_CV1 }}=52.8 \mathrm{mV}_{\text {PK-PK }}$. CH1: V_CV1,10 mV / div. (ac) , $1 \mathrm{~ms} / \mathrm{div}$.

13 Conducted Emissions with Output GND Connected to Ground Plane.

Blue trace - Quasi Peak Detector, highest measurement on L1 or N AC input. Green trace - Average Detector, highest measurement on L1 or N AC input.

13.1 115VAC

Figure 72 - Conducted Emissions: 115VAC Input.
Output GND connected to ground plane.

Final Measurement Quasi Peak Detector.

$\begin{gathered} \text { Frequency } \\ (\mathrm{MHz}) \end{gathered}$	QuasiPeak ($\mathrm{dB} \mu \mathrm{V}$)	Meas. Time (ms)	$\begin{gathered} \text { Bandwidth } \\ (k H z) \end{gathered}$	Filter	Line	Corr. (dB)	Margin (dB)	$\begin{gathered} \text { Limit } \\ (\mathrm{dB} \mu \mathrm{~V}) \end{gathered}$	Comment
0.150000	55.3	1000.000	10.000	On	N	20.0	10.7	66.0	
19.243000	44.0	1000.000	10.000	On	L1	20.0	16.0	60.0	
25.831000	46.7	1000.000	10.000	On	L1	20.0	13.3	60.0	

Table 12 - Conducted Emissions-Quasi Peak Detector: 115VAC Input.
Most Significant Peaks.

Final Measurement Average Detector.

Frequency $(\mathbf{M H z})$	Average $(\mathbf{d B} \boldsymbol{\mu} \mathbf{V})$	Meas. Time $(\mathbf{m s})$	Bandwidth $(\mathbf{k H z})$	Filter	Line	Corr. $(\mathbf{d B})$	Margin $(\mathbf{d B})$	Limit $(\mathbf{d B} \boldsymbol{\mu} \mathbf{V})$	Comment
19.036000	40.2	1000.000	10.000	On	N	20.0	9.8	50.0	
25.565500	41.8	1000.000	10.000	On	N	20.0	8.2	50.0	

Table 13 - Conducted Emissions-Average Detector: 115VAC Input.
Most Significant Peaks.

13.2 230VAC

Figure 73 - Conducted Emissions: 230VAC Input. Output GND connected to ground plane.

Final Measurement Quasi Peak Detector.

Frequency $(\mathbf{M H z})$	QuasiPeak $(\mathbf{d B} \boldsymbol{\mu} \mathbf{V})$	Meas. Time $(\mathbf{m s})$	Bandwidth $(\mathbf{k H z})$	Filter	Line	Corr. $(\mathbf{d B})$	Margin $(\mathbf{d B})$	Limit $(\mathbf{d B} \mu \mathrm{V})$	Comment
18.928000	46.2	1000.000	10.000	On	N	20.0	13.8	60.0	
25.075000	46.4	1000.000	10.000	On	N	20.0	13.6	60.0	

Table 14 - Conducted Emissions- Quasi Peak Detector: 230VAC Input.
Most Significant Peaks.

Final Measurement Average Detector.

Frequency (MHz)	Average (dBuV)	Meas. Time (ms)	$\begin{gathered} \text { Bandwidth } \\ (k H z) \end{gathered}$	Filter	Line	Corr. (dB)	Margin (dB)	$\begin{aligned} & \text { Limit } \\ & (\mathrm{dB} \mu \mathrm{~V}) \end{aligned}$	Comment
18.928000	41.3	1000.000	10.000	On	L1	20.0	8.8	50.0	
25.116500	41.1	1000.000	10.000	On	N	20.0	8.9	50.0	

Table 15 - Conducted Emissions- Average Detector: 230VAC Input.
Most Significant Peaks.

14 Lighting Surge Test

14.1 Differential Surge Test

Passed ± 1 kV Differential Test.

Surge Voltage $(\mathbf{k V})$	Phase Angle $(\mathbf{0})$	IEC Coupling	Generator Impedance $(\boldsymbol{\Omega})$	Number Strikes	Result
$\boldsymbol{+ 1}$	0	$\mathrm{~L} 1 / \mathrm{L} 2$	2	10	PASS
$\mathbf{- 1}$	0	$\mathrm{~L} 1 / \mathrm{L} 2$	2	10	PASS
$\boldsymbol{+ 1}$	90	$\mathrm{~L} 1 / \mathrm{L} 2$	2	10	PASS
$\mathbf{- 1}$	90	$\mathrm{~L} 1 / \mathrm{L} 2$	2	10	PASS
$\boldsymbol{+ 1}$	180	$\mathrm{~L} 1 / \mathrm{L} 2$	2	10	PASS
$\mathbf{- 1}$	180	$\mathrm{~L} 1 / \mathrm{L} 2$	2	10	PASS
$\boldsymbol{+ 1}$	270	$\mathrm{~L} 1 / \mathrm{L} 2$	2	10	PASS
$\mathbf{- 1}$	270	$\mathrm{~L} 1 / \mathrm{L} 2$	2	10	PASS

Table 16 - Differential Surge Test Results

14.2 Common mode Surge Test

Passed ± 2 kV, CM Surge Test.

Surge VoItage $\mathbf{(k V)}$	Phase Angle $\mathbf{(})$	IEC Coupling	Generator Impedance $(\boldsymbol{\Omega})$	Number Strikes	Result
$\mathbf{+ 2}$	0	$\mathrm{~L} 1, \mathrm{~L} 2 / \mathrm{PE}$	12	10	PASS
$\mathbf{- 2}$	0	$\mathrm{~L} 1, \mathrm{~L} 2 / \mathrm{PE}$	12	10	PASS
$\mathbf{+ 2}$	90	$\mathrm{~L} 1, \mathrm{~L} 2 / \mathrm{PE}$	12	10	PASS
$\mathbf{- 2}$	90	$\mathrm{~L} 1, \mathrm{~L} 2 / \mathrm{PE}$	12	10	PASS
$\mathbf{+ 2}$	180	$\mathrm{~L} 1, \mathrm{~L} 2 / \mathrm{PE}$	12	10	PASS
$\mathbf{- 2}$	180	$\mathrm{~L} 1, \mathrm{~L} 2 / \mathrm{PE}$	12	10	PASS
$\mathbf{+ 2}$	270	$\mathrm{~L} 1, \mathrm{~L} 2 / \mathrm{PE}$	12	10	PASS
$\mathbf{- 2}$	270	$\mathrm{~L} 1, \mathrm{~L} 2 / \mathrm{PE}$	12	10	PASS

Table 17 - Common Mode Surge Test Results

14.3 Ring Wave Surge Test Results

Passed ± 6 kV, Ring Wave Test

Ring Wave Voltage (kV)	Phase Angle (${ }^{\circ}$)	IEC Coupling	Generator Impedance (Ω)	Number Strikes	Result
+6	0	L1, L2 / PE	12	10	PASS
-6	0	L1, L2 / PE	12	10	PASS
+6	90	L1, L2 / PE	12	10	PASS
-6	90	L1, L2 / PE	12	10	PASS
+6	180	L1, L2 / PE	12	10	PASS
-6	180	L1, L2 / PE	12	10	PASS
+6	270	L1, L2 / PE	12	10	PASS
-6	270	L1, L2 / PE	12	10	PASS

Table 18 - Ring Wave Surge Test Results

15 ESD Test Results

Load $=5 \mathrm{~V} 3 \mathrm{~A}, 38 \mathrm{~V} 630 \mathrm{~mA} 38.9 \mathrm{~W}$ total.

Supply Voltage $=115 \mathrm{VAC}$			Supply Voltage=	115	
Air discharge	P/F	Comments	Contact discharge	P/F	Comments
+2kV	P		+2kV	P	
-2kV	P		-2kV	P	
+4kV	P		$+4 \mathrm{kV}$	P	
-4kV	P		-4kV	P	
+8kV	P		$+6 \mathrm{kV}$	P	
-8kV	P		-6kV	P	
+15kV	P		+8kV	P	
-15kV	P		-8kV	P	
Extended Levels			Extended Levels		
16.5 kV	P				

Table 19 - ESD Immunity Test Results, 115VAC

Supply Voltage= 230VAC Supply Voltage= 230VAC

Air discharge	P/F	Comments	Contact discharge	P/F	Comments
+2 kV	P		+2 kV	P	
-2 kV	P		-2 kV	P	
+4 kV	P		+4 kV	P	
-4 kV	P		-4 kV	P	
+8 kV	P		+6 kV	P	
-8 kV	P		-6 kV	P	
+15 kV	P		+8 kV	P	
-15 kV	P		-8 kV	P	
Extended Levels			Extended Levels		
16.5 kV	P				

Table 20 - ESD Immunity Test Results, 230VAC

16 Thermals and heatsink design

16.1 Board with Heat Sink

Figure 74 - Populated Circuit Board Photograph, with Heat Sink.

16.2 Component Temperatures with Heat Sink

Table 21 - Component Temperatures

16.3 Heat Sink Drawing

Notes: DER636

PN 61-00232-00
Heat Sink

Material: 3003 Aluminum 60 mil

Figure 75 - Heat Sink Drawing.

Figure 76 - Heat Sink Insulator Sheet Drawing.

Material: Non-Silicon Pad - t-Global Technology - PC94-150-150-2.0-0
Figure 77 - Heat Sink Thermal Pad Drawing.

Figure 78 - Heat Sink Assembly Drawing.

17 Revision History

Date	Author	Revision	Description \& Changes	Reviewed
19-Mar-19	GBP	1.0	Initial Release	Apps \& MKtg
19-Aug-19	GBP	1.1	Updated Pg 17, \#5, Figures 19-21 and 28-30.	Apps \& MKtg
09-Sept-19	GBP	1.2	Added Table references and index	

Power Integrations, Inc.

For the latest updates, visit our website: www.power.com

Reference Designs are technical proposals concerning how to use Power Integrations' gate drivers in particular applications and/or with certain power modules. These proposals are "as is" and are not subject to any qualification process. The suitability, implementation and qualification are the sole responsibility of the end user. The statements, technical information and recommendations contained herein are believed to be accurate as of the date hereof. All parameters, numbers, values and other technical data included in the technical information were calculated and determined to our best knowledge in accordance with the relevant technical norms (if any). They may base on assumptions or operational conditions that do not necessarily apply in general. We exclude any representation or warranty, express or implied, in relation to the accuracy or completeness of the statements, technical information and recommendations contained herein. No responsibility is accepted for the accuracy or sufficiency of any of the statements, technical information, recommendations or opinions communicated and any liability for any direct, indirect or consequential loss or damage suffered by any person arising therefrom is expressly disclaimed.

Power Integrations reserves the right to make changes to its products at any time to improve reliability or manufacturability. Power Integrations does not assume any liability arising from the use of any device or circuit described herein. POWER INTEGRATIONS MAKES NO WARRANTY HEREIN AND SPECIFICALLY DISCLAIMS ALL WARRANTIES INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF THIRD PARTY RIGHTS.

Patent Information

The products and applications illustrated herein (including transformer construction and circuits' external to the products) may be covered by one or more U.S. and foreign patents, or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A complete list of Power Integrations' patents may be found at www.power.com. Power Integrations grants its customers a license under certain patent rights as set forth at http://www.power.com/ip.htm.

Power Integrations, the Power Integrations logo, CAPZero, ChiPhy, CHY, DPA-Switch, EcoSmart, E-Shield, eSIP, eSOP, HiperPLC, HiperPFS, HiperTFS, InnoSwitch, Innovation in Power Conversion, InSOP, LinkSwitch, LinkZero, LYTSwitch, SENZero, TinySwitch, TOPSwitch, PI, PI Expert, SCALE, SCALE-1, SCALE-2, SCALE-3 and SCALE-iDriver, are trademarks of Power Integrations, Inc. Other trademarks are property of their respective companies. ©2019, Power Integrations, Inc.

Power Integrations Worldwide Sales Support Locations

WORLD HEADQUARTERS

5245 Hellyer Avenue
San Jose, CA 95138, USA.
Main: +1-408-414-9200
Customer Service:
Worldwide: +1-65-635-64480
Americas: +1-408-414-9621
e-mail: usasales@power.com

CHINA (SHANGHAI)

Rm 2410, Charity Plaza, No. 88, North Caoxi Road, Shanghai, PRC 200030
Phone: +86-21-6354-6323
e-mail:chinasales@power.com

CHINA (SHENZHEN)

17/F, Hivac Building, No. 2, Keji Nan 8th Road, Nanshan District, Shenzhen, China, 518057
Phone: +86-755-8672-8689
e-mail: chinasales@power.com

GERMANY (AC-DC/LED Sales)
Einsteinring 24
85609 Dornach/Aschheim Germany
Tel: +49-89-5527-39100
e-mail: eurosales@power.com

GERMANY (Gate Driver Sales) HellwegForum 1
59469 Ense
Germany
Tel: +49-2938-64-39990
e-mail: igbt-driver.sales@ power.com

INDIA

\#1, $14^{\text {th }}$ Main Road
Vasanthanagar
Bangalore-560052
India
Phone: +91-80-4113-8020
e-mail: indiasales@power.com

ITALY

Via Milanese 20, $3^{\text {rd }}$. Fl.
20099 Sesto San Giovanni (MI) Italy
Phone: +39-024-550-8701
e-mail: eurosales@power.com

JAPAN

Yusen Shin-Yokohama 1-chome Bldg. 1-7-9, Shin-Yokohama, Kohoku-ku Yokohama-shi, Kanagawa 222-0033 Japan
Phone: +81-45-471-1021
e-mail: japansales@power.com

KOREA

RM 602, 6FL
Korea City Air Terminal B/D, 159-6
Samsung-Dong, Kangnam-Gu, Seoul, 135-728 Korea Phone: +82-2-2016-6610
e-mail: koreasales@power.com

SINGAPORE

51 Newton Road, \#19-01/05 Goldhill Plaza Singapore, 308900
Phone: +65-6358-2160
e-mail: singaporesales@power.com

TAIWAN

5F, No. 318, Nei Hu Rd., Sec. 1
Nei Hu District
Taipei 11493, Taiwan R.O.C.
Phone: +886-2-2659-4570
e-mail: taiwansales@power.com

UK

Building 5, Suite 21
The Westbrook Centre
Milton Road
Cambridge
CB4 1YG
Phone: +44 (0) 7823-557484
e-mail: eurosales@power.com

